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1. Geometry of GID

Grazing-incidence diffraction is a scattering
geometry combining the Bragg condition with the
conditions for x-ray total external reflection from
crystal surfaces. This provides superior
characteristics of GID as compared to the other
diffraction schemes in the studies of thin surface
layers, since the penetration depth of x-rays inside
the slab is reduced by three orders of magnitude
(Fig.1) -- typically from 1-10µm to 1-10nm (10-
100Å).
The geometry of GID can be approached by two
different ways.
1. Let we have a setup for usual x-ray reflectivity
(Fig.2a). The wave E0 incident on the surface at a
small angle Φ0 produces specularly reflected wave
Es. Now, let us rotate the sample round its surface
normal, thus preserving the small angle Φ0. At this
rotation, the wave E0 can make the Bragg angle ΘB

with some atomic planes perpendicular to the surface
and originate the diffracted wave. This diffracted
wave will be directed at a small angle inwards the
sample, because there is no momentum transfer
pushing it outwards (the reciprocal lattice vector is
parallel to the surface). However, in spite of the
generation inside crystal, it occurs that the diffracted
wave can experience the same specular reflection
effect as for the incidence wave. This gives rise to
specular diffracted wave Eh that takes off the crystal
at a small angle Φh. The value of Φh can differ from
Φ0, but we shall discuss it later. One can also

consider that the wave Eh is generated by the
Bragg diffraction of specularly reflected wave Es.
Both the presentations are simplified because in
reality the processes of Bragg diffraction and
specular reflection interact with each other and
cannot be separated out. The most important fact
is that Eh principally contains information on the
structure of very thin surface layer.
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2. GID can be also be viewed as a specific case of
symmetric Laue diffraction (Fig.2b). When sample
set in the conditions for Laue diffraction is rotated by
90º round the reciprocal lattice vector, the Bragg
angle is preserved and we end up with GID. This
approach is often helpful for understanding some
effects in GID. For example, like in usual Laue
diffraction, in GID there are Borrmann and anti-
Borrmann wavefields with weaker and stronger
interaction with crystal, respectively.
Let us discuss the angles where GID is characterized
by the maximum sensitivity to thin layers. The
intuitive estimate is that either Φ0 or Φh  should be
less than the critical angle Φc= |χ0|

1/2 for total
external reflection (Fig.1). Then, either the
illuminated depth should be as small as a few
nanometers, or the diffracted intensity would yield
from this small depth. Such an estimate is correct for
kinematic GID from highly disordered crystals. For
dynamical GID the total reflection conditions differ
for the Borrmann and anti-Borrmann fields (Fig.3).
The anti-Borrmann field behaves more or less as
expected – either Φ0 or Φh should be small; while the
Borrmann field is totally reflected only when both of
the angles are small. That means, e.g., that you can
illuminate a crystal at a small angle and see the GID
signal from relatively deep layers.
Before proceeding to applications we need to
introduce one more effect specific to GID. The
conditions: kh

2 = k0
2 and kh⊥

 = k0⊥ + h⊥ allow to
determine khz and the angle Φh :

Φh
2  =  ΦhB

2 − α   ,                              (1)

where  ΦhB = |Φ0 + hz/k0| and α = (2k0h+h2)/k0
2 =

− 2sinΘB (Θ−ΘB).  Eq.(1) has an interesting
consequence: since the angles Φ0 and Φh have the
order of 1mrad, the deviations of incidence wave
from Bragg angle by a few seconds of arc are
resulted in 1000 times greater changes of Φh (see
Fig.4). This effect is widely used for the
measurements of GID.
Finally, GID is not the only geometry combining
Bragg diffraction and total external reflection. Other
grazing geometries are extremely asymmetric (EAD)
diffraction with either grazing incidence or grazing
exit (Fig.5a) and grazing Bragg-Laue (GBL)
diffraction (Fig.5b). EAD is realized when the Bragg
angle coincides with the misorientation angle ϕ of
the Bragg planes. With few exceptions this requires
tunable x-ray source (synchrotron). The advantage is
the possibility to measure both the normal and lateral
strains and have surface sensitivity comparable with
that of GID. The Bragg-Laue scheme is similar to
GID, but the diffracted wave is pushed out of crystal
due to a small miscut of atomic planes (1-5°) instead
of the specular reflection effect. This provides some
more freedom in selecting the incidence angle than
in GID. The surface sensitivity is slightly less, but

the experimental implementation is much easier.
The great scheme for laboratory use!

2. Typical applications
The major application of GID is to measure strain
relaxation in thin layers and multilayers (see Fig.6
and Refs.[10,16,18,19] ). Here are two advantages of
GID as compared with usual symmetric Bragg-case
diffraction. First, as we have discussed, x-ray
extinction in GID is reduced by several orders
magnitude, i.e. much thinner layers become
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accessible. Moreover, the extinction of GID can be
varied changing the incidence angle (i.e. the probed
depth can be tuned in order to meet sample
requirements). Second, GID measures lattice
relaxation directly (the scattering is from atomic
planes perpendicular to the surface), while in the
Bragg case it is measured indirectly (through the
change in normal lattice spacing).
At present, practically all the other techniques
developed for usual Bragg diffraction have been
implemented in GID too. This allowed adapting the
requirements of modern microelectronics research by
extending x-ray diffraction techniques to much
thinner layers. For example, one can study point
defects in thin layers with Huang diffuse scattering
in GID [15]. Even the methods of x-ray structure
analysis have been transferred to GID and applied
with success to surface crystallography problems
(especially to the studies of surface reconstruction).

Unfortunately, this interesting topic is outside the
scope of our discussion.
On the other hand, a series of GID applications uses
the approaches developed in x-ray reflectometry. For
example, one can measure the thickness of
amorphous surface layer recording the integral
intensity of GID as a function of the incidence angle
(i.e. like in usual x-ray specular reflectivity
measurements, but with x-ray detector in the
diffracted beam direction). Since amorphous films
attenuate x-ray intensity incident onto the crystal and
at small angles the attenuation is stronger, then, the
thicker is the film, the greater is the reduction of GID
reflectivity at small angles (Fig.7). Such a technique
turned our to be very effective for the measurements

of amorphization effects in ion implantation
[11,12,17]. Another example of this kind is the
application of GID to the studies of surface and
interface roughness. The sensitivity of GID to
roughness is equivalent to that of x-ray specular
reflection experiments. This is because the angles
with the surface are of the same order. However, it
turns out that GID can provide a unique information
on atomic ordering inside roughness [20].

3. Experimental Setups
Now, when you are familiar with what is possible to
measure with GID, let us discuss how  to measure it.
The major types of GID schemes are presented on
Fig.8.

With the scheme (a) you can measure the integral
reflectivity of GID as a function of the incident angle
(like the curves on Fig.7). This is the simplest
scheme easily implemented in laboratory
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environment with ordinary x-ray tubes. It is good for
the detection of amorphous layers. However, this is,
probably, the only possible application.
The schemes (b) and (c) present two possible types
of “double-crystal” measurements  in GID. The
difference between (c) and corresponding usual
schemes is the necessity of the second angular
collimation of incidence beam (over the grazing
angle) and a very strong spatial collimation (in order
to avoid great footprint of the grazing beam and
scattering from crystal edges). This is normally not
achievable in laboratory. The scheme (b) is often
equivalent to (c) because of Eq.(1), as illustrated on
Fig.4. When implemented with a position sensitive
detector (PSD), this scheme provides much better
intensity conditions (the beam is not collimated over
the Bragg angle), which principally can be met in
laboratory. However, this scheme is not applicable to
the measurements of strain relaxation: in the
presence of relaxation Eq.(1) can be roughly applied
to the Bragg angle of each lattice spacing in crystal
and the relation between Φh and (Θ−ΘB) becomes
meshed.
Schemes (d), (e), and (f) are for separating out
coherent GID reflection and diffuse scattering (DS)
from defects. These normally require synchrotron
radiation. Among (d) and (e), the former one is
easier in use, since no analyzer adjustment is
necessary with respect to diffracted beam with strong
vertical spread. The complete solution to the
problem of DS measurements is only given by the
scheme (f), which corresponds to three-dimensional
mapping of reciprocal space. A more detailed
discussion on high-resolution measurements in GID
can be found in [5].

Kinematical vs dynamical theory
Like the x-ray diffraction in other geometries, GID
can be described with either kinematical or
dynamical theory. As known, the kinematical theory
is a perturbation theory treating diffraction as a
single scattering event with negligible effect on the
intensity of initial waves. According to this theory,
the scattering amplitude Eh is given by the matrix
element of the perturbation χ(z)=χh(z)exp[ihz(z)z]
with the two wavefields  which are produced in
target by the incident wave E0 and the inverted
diffracted wave Eout. The latter one is the wave
illuminating the crystal from the place where  is your
detector  (see Fig.9a):

Eh ~ ∫ Dout(z)χ(z) Din(z)dz    ,                  (2)

In conventional  diffraction geometries it is common
to neglect the refraction and specular reflection
effects of x-rays. Then, both the initial waves are
plane: Din(z)=E0exp(ikΦ0z), Dout(z)=Eoutexp(ikΦhz).
This gives the well-known Born approximation
(comp. Fig.9b).

In GID, the waves the specular reflection is essential

and Din, Dout are given by the Fresnel equations. For
example, for a perfect crystal: Din = (Φ0-
u0)/(Φ0+u0)exp(iku0z), Dout = (Φh-
uh)/(Φh+uh)exp(ikuhz), where u=(Φ2+c0)

1/2. For a

multilayer, these wave fields are given by Parratt's or
Abeles method as a solution to respective x-ray
specular reflection  problem [31,32]. The solution
must be obtained twice -- for E0 and Eout incident
waves.
If your crystal is perfect, you have to consider the
interpretation of your data with the dynamical
theory. In the 70s, at the beginning of GID studies
there were some doubts whether GID needs a
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dynamical theory at all. The argument put forward,
e.g. by Vineyard [30] was, that the penetration of x-
rays in crystals is very small and therefore any
multiple scattering effects are negligible. However,
numerous posterior experiments (see, for example,
[1,3,4]) proved the existence of multiple dynamical
effects in GID. The necessity of the dynamical
theory is stimulated by permanently improving
quality of semiconductor structures, which are the
main object of GID applications.
Multiple scattering effects are essential in GID
because the Bragg planes are perpendicular to the
surface, so therefore x-rays are multiply scattered
along the surface (Fig.10a). Clearly, the theory has
to take into account x-ray refraction and specular
reflection at the surface (and internal interfaces, if
present). This provides two differences with
conventional cases:
(a) The terms (k0

2-k2) and (kh
2-k2) in the dispersion

equation cannot be approximated as 2k(k0-k)
and 2k(kh-k), respectively. It means, that the
dispersion equation is the fourth-order
polynomial providing four pairs of transmitted
and diffracted waves: Dh

(j)=v(j)D0
(j),   j=1,2,3,4.

Among these fields, one is the Borrmann field,
one is anti-Borrmann  field, and the other two
are specularly reflected Borrmann and anti-
Borrmann fields respectively.

(b) The boundary conditions are formulated for x-
ray waves and their derivatives and contain the
specular waves. For a perfect crystal without
any layers these are (see Fig.10a):

E0     +    Es =      D0
(1)   +    D0

(2)   ,                  (3)
Φ0E0−Φ0Es =  u(1)D0

(1) + u(2)D0
(2)  ,                 (4)

Eh =  v(1)D0
(1) + v(2)D0

(2)  ,                 (5)
−ΦhEh =  w(1)D0

(1)+w(2)D0
(2)  .                 (6)

Here u(j)=k0z
(j)/k are the solutions to the dispersion

equation and w(j)=v(j)(u(j)+hz/k). Eqs.(3)-(4) contain
the fields j=1,2 only, because  the fields j=3,4 have
zero amplitudes (there are no specular waves inside
thick substrates, because there is no lower interface
to originate them).
Now, let us compare these equations with those for
conventional x-ray specular reflection (Fig.10b):

    E0 +   Es  =  D0  ,
Φ0E0−Φ0Es = uD0  ,

and with those for conventional Laue-case
diffraction (Fig.10c):

E0 =     D0
(1)  +     D0

(2)  ,
0  = v(1)D0

(1) + v(2)D0
(2) .

You can see that all the structure of equations in all
the three cases is similar. That gives some drive to
obtain a universal algorithm for the calculations of
GID, usual diffraction and  specular reflection.

5. GID in multilayers and matrix
dynamical theory

The dynamical theory outlined in the previous
section is for perfect crystals without defects. Let us
discuss how can it be extended for strained crystals
and multilayers. A serious theoretical problem is that
usual Takagi-Taupin approach is not applicable: the
x-ray wave fields vary with depth at nearly
interatomic scale, so that their second derivatives
cannot be neglected. One has to apply either matrix
extension of the Takagi equations [38,39], or try to
construct something like Abeles' matrix method or
Parratt's recursion equations known for x-ray
specular reflection from multilayers.
An analog of Abeles method for GID can be derived
in a straightforward way [16,41,42]. Let we have a
multilayer, or  a crystal formally subdivided into a
series of layers with invariable crystal structure
within each layer. Then, the dynamical diffraction
equations for a perfect crystal can be applied for
each layer and the boundary conditions like (3)-(6)
can be put at each interface. The latter can be
presented in a (4x4) matrix form for vectors
Dn=(D0n

(1), D0n
(2), D0n

(3), D0n
(4)):

E=S1D1 ,    D1=S2D2  , …..  DN-1=SNDN   ,
or

E=SDN   .                                 (7)

Here S are the (4x4) matrices composed by vn
(j), un

(j),
wn

(j), etc;  S= S1 S2…. Sn  , and E=(E0,0,Es,Eh).
Eq.(7) formally solves the problem, because it
contains four simple linear equations for four
unknown amplitudes (Es, Eh, D0N

(1), D0N
(2)).

However, it provide divergences for thick
multilayers. There are some workarounds on this
problem with the help of dynamically varied thick
crystal approximation (see e.g. [42]). However, in
the range where the anti-Borrmann x-ray field is
reflected and the other one not, the problem becomes
inevitable.
A complete solution to the problem has been
obtained with further development of the same
matrix method and proceeding to recursive equations
for (2x2) blocks of original (4x4) matrices. The new
approach, yet unpublished, has been tested with GID
and EAD from GaAs/AlAs multilayers and proven to
work perfectly. Far from the Bragg angle it reduces
to scalar recursive equations by Parratt, and far from
grazing incidence and exit it gives the recursive
equations by Bartels, Honstra and Loobeck for
multilayer diffraction.
At present I am developing a WWW interface to the
program based on this algorithm and simulating
multilayer diffraction in GID, EAD and GBL. The
interface should be ready at the beginning of
November. For those, who are interested, please,
check the link:

http://sergey.bio.aps.anl.gov
I will report there on my advances with this project.
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6. Diffuse scattering in GID
As soon as the diffraction problem for multilayer is
solved, the obtained fields can be used for the
calculation of scattering from point-like defects,

dislocation loops, roughness, etc. If I stay in time, I
am going to give here an example of such
calculations -- a study of roughness effects on GID.
Alternatively, I suggest having a look at Ref.[19].
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